Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Bone Miner Res ; 39(1): 39-49, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630876

RESUMEN

Aerobic exercise reduces circulating ionized Ca (iCa) and increases parathyroid hormone (PTH), but the cause and consequences on Ca handling are unknown. The objective of this study was to determine the effects of strenuous exercise on Ca kinetics using dual stable Ca isotopes. Twenty-one healthy women (26.4 ± 6.7 yr) completed a randomized, crossover study entailing two 6-d iterations consisting of either 60 min of treadmill walking at 65% VO2max wearing a vest weighing 30% body weight on study days 1, 3, and 5 (exercise [EX]), or a rest iteration (rest [REST]). On day 1, participants received intravenous 42Ca and oral 44Ca. Isotope ratios were determined by thermal ionization mass spectrometry. Kinetic modeling determined fractional Ca absorption (FCA), Ca deposition (Vo+), resorption (Vo-) from bone, and balance (Vbal). Circulating PTH and iCa were measured before, during, and after each exercise/rest session. Data were analyzed by paired t-test or linear mixed models using SPSS. iCa decreased and PTH increased (P < .001) during each EX session and were unchanged during REST. On day 1, urinary Ca was lower in the EX pool (25 ± 11 mg) compared to REST (38 ± 16 mg, P = .001), but did not differ over the full 24-h collection (P > .05). FCA was greater during EX (26.6 ± 8.1%) compared to REST (23.9 ± 8.3%, P < .05). Vbal was less negative during EX (-61.3 ± 111 mg) vs REST (-108 ± 23.5 mg, P < .05), but VO+ (574 ± 241 vs 583 ± 260 mg) and VO- (-636 ± 243 vs -692 ± 252 mg) were not different (P > .05). The rapid reduction in circulating iCa may be due to a change in the miscible Ca pool, resulting in increased PTH and changes in intestinal absorption and renal Ca handling that support a more positive Ca balance.


Asunto(s)
Calcio de la Dieta , Calcio , Humanos , Femenino , Calcio/metabolismo , Estudios Cruzados , Hormona Paratiroidea , Ejercicio Físico , Absorción Intestinal
2.
Physiol Rep ; 11(23): e15885, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036455

RESUMEN

Previous studies have demonstrated both energy restriction (ER) and higher protein (HP), lower carbohydrate (LC) diets downregulate hepatic de novo lipogenesis. Little is known about the independent and combined impact of ER and HP/LC diets on tissue-specific lipid kinetics in leptin receptor-deficient, obese rodents. This study investigated the effects of ER and dietary macronutrient content on body composition; hepatic, subcutaneous adipose tissue (SAT), and visceral AT (VAT) lipid metabolic flux (2 H2 O-labeling); and blood and liver measures of cardiometabolic health in six-week-old female obese Zucker rats (Leprfa+/fa+ ). Animals were randomized to a 10-week feeding intervention: ad libitum (AL)-HC/LP (76% carbohydrate/15% protein), AL-HP/LC (35% protein/56% carbohydrate), ER-HC/LP, or ER-HP/LC. ER groups consumed 60% of the feed consumed by AL. AL gained more fat mass than ER (P-energy = 0.012) and HP/LC gained more fat mass than HC/LP (P-diet = 0.025). Hepatic triglyceride (TG) concentrations (P-interaction = 0.0091) and absolute hepatic TG synthesis (P-interaction = 0.012) were lower in ER-HP/LC versus ER-HC/LP. ER had increased hepatic, SAT, and VAT de novo cholesterol fractional synthesis, absolute hepatic cholesterol synthesis, and serum cholesterol (P-energy≤0.0035). A HP/LC diet, independent of energy intake, led to greater gains in fat mass. A HP/LC diet, in the context of ER, led to reductions in absolute hepatic TG synthesis and TG content. However, ER worsened cholesterol metabolism. Increased adipose tissue TG retention with the HP/LC diet may reflect improved lipid storage capacity and be beneficial in this genetic model of obesity.


Asunto(s)
Carbohidratos de la Dieta , Lipogénesis , Animales , Femenino , Ratas , Colesterol/metabolismo , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Ratas Zucker , Triglicéridos
3.
Stress Health ; 39(S1): 33-39, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37395310

RESUMEN

Military personnel experience training and operational demands that are different from civilian populations, including frequent deployment, exposure to austere environments, and dislocation from family. These unique occupational demands may result in negative impacts on health, performance, and career success. As such, resilience, defined as a system's capacity to resist, recover, recover better, or adapt, to perturbation from a challenge or stressor, is a critical factor in assuring the health and safety of military personnel. In recent years, the Department of Defense (DoD) has funded research programs assessing the physiological basis of resilience. This review will overview research programs, review salient findings from recent studies, and highlight potential future areas of research. Physiological factors influencing or predicting resilience in US military populations, including physical performance, anthropometrics and body composition, nutrition and dietary supplements, and other biomarkers will be highlighted. Finally, this manuscript will detail potential future studies, including interventions, aimed at optimising physiological resilience in military personnel.


Asunto(s)
Personal Militar , Resiliencia Psicológica , Humanos , Personal Militar/psicología , Resiliencia Psicológica/fisiología
4.
Mil Med ; 188(Suppl 4): 9-18, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490559

RESUMEN

INTRODUCTION: The Women in Combat Summit 2021 "Forging the Future: How Women Enhance the Fighting Force" took place during February 9-11, 2021, via a virtual conference platform. The third and final day of the Summit regarded the physical health and well-being of military women and included the topics of urogenital health, nutrition and iron-deficiency anemia, unintended pregnancy and contraception, and traumatic brain injury. MATERIALS AND METHODS: After presentations on the topics earlier, interested conference attendees were invited to participate in focus groups to discuss and review policy recommendations for physical health and well-being in military women. Discussions centered around the topics discussed during the presentations, and suggestions for future Women in Combat Summits were noted. Specifics of the methods of the Summit are presented elsewhere in this supplement. RESULTS: We formulated research and policy recommendations for urogenital health, nutrition and iron-deficiency anemia, contraception and unintended pregnancy, and traumatic brain injury. CONCLUSIONS: In order to continue to develop the future health of military women, health care providers, researchers, and policymakers should consider the recommendations made in this supplement as they continue to build on the state of the science and forge the future.


Asunto(s)
Anemia Ferropénica , Lesiones Traumáticas del Encéfalo , Personal Militar , Embarazo , Humanos , Femenino , Anticoncepción , Embarazo no Planeado
5.
Metabolomics ; 19(4): 39, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041398

RESUMEN

INTRODUCTION: The metabolomic profiles of Soldiers entering the U.S. Special Forces Assessment and Selection course (SFAS) have not been evaluated. OBJECTIVES: To compare pre-SFAS blood metabolomes of Soldiers selected during SFAS versus those not selected, and explore the relationships between the metabolome, physical performance, and diet quality. METHODS: Fasted blood samples and food frequency questionnaires were collected from 761 Soldiers prior to entering SFAS to assess metabolomic profiles and diet quality, respectively. Physical performance was assessed throughout SFAS. RESULTS: Between-group differences (False Discovery Rate < 0.05) in 108 metabolites were detected. Selected candidates had higher levels of compounds within xenobiotic, pentose phosphate, and corticosteroid metabolic pathways, while non-selected candidates had higher levels of compounds potentially indicative of oxidative stress (i.e., sphingomyelins, acylcarnitines, glutathione, amino acids). Multiple compounds higher in non-selected versus selected candidates included: 1-carboxyethylphenylalanine; 4-hydroxy-nonenal-glutathione; α-hydroxyisocaproate; hexanoylcarnitine; sphingomyelin and were associated with lower diet quality and worse physical performance.  CONCLUSION: Candidates selected during SFAS had higher pre-SFAS levels of circulating metabolites that were associated with resistance to oxidative stress, higher physical performance and higher diet quality. In contrast, non-selected candidates had higher levels of metabolites potentially indicating elevated oxidative stress. These findings indicate that Soldiers who were selected for continued Special Forces training enter the SFAS course with metabolites associated with healthier diets and better physical performance. Additionally, the non-selected candidates had higher levels of metabolites that may indicate elevated oxidative stress, which could result from poor nutrition, non-functional overreaching/overtraining, or incomplete recovery from previous physical activity.


Asunto(s)
Dieta , Personal Militar , Estrés Oxidativo , Acondicionamiento Físico Humano , Biomarcadores/metabolismo , Metabolómica , Humanos , Masculino , Adulto Joven , Adulto , Resiliencia Psicológica , Estados Unidos
6.
Med Sci Sports Exerc ; 55(3): 548-557, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563092

RESUMEN

PURPOSE: Initial military training (IMT) is a transitionary period wherein immune function may be suppressed and infection risk heightened due to physical and psychological stress, communal living, and sleep deprivation. This study characterized changes in biomarkers of innate and adaptive immune function, and potential modulators of those changes, in military recruits during IMT. METHODS: Peripheral leukocyte distribution and mitogen-stimulated cytokine profiles were measured in fasted blood samples, Epstein-Barr (EBV), varicella zoster (VZV), and herpes simplex 1 (HSV1) DNA was measured in saliva by quantitative polymerase chain reaction as an indicator of latent herpesvirus reactivation, and diet quality was determined using the healthy eating index measured by food frequency questionnaire in 61 US Army recruits (97% male) at the beginning (PRE) and end (POST) of 22-wk IMT. RESULTS: Lymphocytes and terminally differentiated cluster of differentiation (CD)4+ and CD8+ T cells increased PRE to POST, whereas granulocytes, monocytes, effector memory CD4+ and CD8+ T cells, and central memory CD8+ T cells decreased ( P ≤ 0.02). Cytokine responses to anti-CD3/CD28 stimulation were higher POST compared with PRE, whereas cytokine responses to lipopolysaccharide stimulation were generally blunted ( P < 0.05). Prevalence of EBV reactivation was higher at POST ( P = 0.04), but neither VZV nor HSV1 reactivation was observed. Diet quality improvements were correlated with CD8+ cell maturation and blunted proinflammatory cytokine responses to anti-CD3/CD28 stimulation. CONCLUSIONS: Lymphocytosis, maturation of T-cell subsets, and increased T-cell reactivity were evident POST compared with PRE IMT. Although EBV reactivation was more prevalent at POST, no evidence of VZV or HSV1 reactivation, which are more common during severe stress, was observed. Findings suggest increases in the incidence of EBV reactivation were likely appropriately controlled by recruits and immune-competence was not compromised at the end of IMT.


Asunto(s)
Personal Militar , Esfuerzo Físico , Privación de Sueño , Estrés Psicológico , Femenino , Humanos , Masculino , Antígenos CD28/sangre , Linfocitos T CD8-positivos/metabolismo , Citocinas/sangre , Estrés Psicológico/inmunología , Privación de Sueño/inmunología , Linfocitos T CD4-Positivos/metabolismo , Esfuerzo Físico/inmunología
7.
Physiol Behav ; 258: 114010, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349660

RESUMEN

Sustained operations (SUSOPS) require military personnel to conduct combat and training operations while experiencing physical and cognitive stress and limited sleep. These operations are often conducted in a state of negative energy balance and are associated with degraded cognitive performance and mood. Whether maintaining energy balance can mitigate these declines is unclear. This randomized crossover study assessed the effects of energy balance on cognitive performance, risk-taking propensity, ambulatory vigilance, and mood during a simulated 72-h SUSOPS. METHODS: Ten male Soldiers (mean ± SE; 22.4 ± 1.7 y; body weight 87.3 ± 1.1 kg) completed two, 72-h simulated SUSOPS in random order, separated by 7 days of recovery. Each SUSOPS elicited ∼4500 kcal/d total energy expenditure and restricted sleep to 4 h/night. During SUSOPS, participants consumed either an energy-balanced or restricted diet that induced a 43 ± 3% energy deficit. A cognitive test battery was administered each morning and evening to assess: vigilance, working memory, grammatical reasoning, risk-taking propensity, and mood. Real-time ambulatory vigilance was assessed each morning, evening, and night via a wrist-worn monitoring device. RESULTS: Participants exhibited heightened risk-taking propensity (p = 0.047) with lower self-reported self-control (p = 0.021) and fatigue (p = 0.013) during energy deficit compared to during energy balance. Vigilance accuracy (p < 0.001) and working memory (p = 0.040) performance decreased, and vigilance lapses increased (p < 0.001) during SUSOPS, but did not differ by diet. Percentage of correct responses to ambulatory vigilance stimuli varied during SUSOPS (p = 0.019) independent of diet, with generally poorer performance during the morning and night. Total mood disturbance (p = 0.001), fatigue (p < 0.001), tension (p = 0.003), and confusion (p = 0.036) increased whereas vigor decreased (p < 0.001) during SUSOPS, independent of diet. CONCLUSION: Prolonged physical activity combined with sleep restriction is associated with impaired vigilance, memory, and mood state. Under such conditions, maintaining energy balance prevents increased risk-taking and improves self-control, but does not improve other aspects of cognitive function or mood. Given the small sample in the present study, replication in a larger cohort is warranted.


Asunto(s)
Personal Militar , Humanos , Masculino , Personal Militar/psicología , Estudios Cruzados , Afecto/fisiología , Cognición/fisiología , Fatiga/psicología , Metabolismo Energético , Asunción de Riesgos , Privación de Sueño
8.
Physiol Rep ; 10(18): e15461, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36117330

RESUMEN

The objective of this study was to determine metabolic and physiological differences between males with low testosterone (LT) versus those with normal testosterone (NT) following a period of severe energy deficit. In this secondary analysis, 68 male US Marines (mean ± SD, 24.6 ± 2.4 y) were dichotomized by testosterone concentration (< or ≥ 10.5 nmol/L as determined from a single blood sample collected between 0600-0630 after an 8-10 h overnight fast by automated immunoassay) following 7 days of near complete starvation (~300 kcal consumed/d, ~85% energy deficit) during Survival, Evasion, Resistance, and Escape (SERE) training. Dietary intake was assessed before (PRE) SERE. Body composition (dual-energy x-ray absorptiometry and peripheral quantitative computed tomography) and whole-body protein turnover (15 N alanine) were assessed before (PRE) and after (POST) SERE. Mean testosterone concentrations decreased PRE (17.5 ± 4.7 nmol/L) to POST (9.8 ± 4.0 nmol/L, p < 0.0001). When volunteers were dichotomized by POST testosterone concentrations [NT (n = 24) 14.1 ± 3.4 vs. LT (n = 44): 7.5 ± 1.8 nmol/L, p < 0.0001], PRE BMI, total fat mass, trunk fat mass, and testosterone were greater and the diet quality score and total carbohydrate intake were lower in NT compared to LT (p ≤ 0.05). LT lost more fat-free mass and less fat mass, particularly in the trunk region, compared to NT following SERE (p-interaction≤0.044). Whole-body protein synthesis, net balance, and flux decreased and whole-body protein breakdown increased from PRE to POST in both groups (p-time ≤0.025). Following short-term, severe energy deficit, Marines who exhibited low testosterone had greater fat-free mass loss than those who maintained normal testosterone concentrations. Altering body composition and dietary strategies prior to physical training that elicits severe energy deficit may provide an opportunity to attenuate post-training decrements in testosterone and its associated effects (e.g., loss of lean mass, performance declines, fatigue).


Asunto(s)
Personal Militar , Testosterona , Absorciometría de Fotón , Composición Corporal/fisiología , Carbohidratos , Humanos , Masculino
9.
J Nutr ; 152(10): 2198-2208, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35906187

RESUMEN

BACKGROUND: Short-term starvation and severe food deprivation (FD) reduce dietary iron absorption and restricts iron to tissues, thereby limiting the amount of iron available for erythropoiesis. These effects may be mediated by increases in the iron regulatory hormone hepcidin; however, whether mild to moderate FD has similar effects on hepcidin and iron homeostasis is not known. OBJECTIVES: To determine the effects of varying magnitudes and durations of FD on hepcidin and indicators of iron status in male and female mice. METHODS: Male and female C57BL/6J mice (14 wk old; n = 170) were randomly assigned to consume AIN-93M diets ad libitum (AL) or varying magnitudes of FD (10%, 20%, 40%, 60%, 80%, or 100%). FD was based on the average amount of food consumed by the AL males or females, and food was split into morning and evening meals. Mice were euthanized at 48 h and 1, 2, and 3 wk, and hepcidin and indicators of iron status were measured. Data were analyzed by Pearson correlation and one-way ANOVA. RESULTS: Liver hepcidin mRNA was positively correlated with the magnitude of FD at all time points (P < 0.05). At 3 wk, liver hepcidin mRNA increased 3-fold with 10% and 20% FD compared with AL and was positively associated with serum hepcidin (R = 0.627, P < 0.0001). Serum iron was reduced by ∼65% (P ≤ 0.01), and liver nonheme iron concentrations were ∼75% greater (P ≤ 0.01) with 10% and 20% FD for 3 wk compared with AL. Liver hepcidin mRNA at 3 wk was positively correlated with liver Bmp6 (R = 0.765, P < 0.0001) and liver gluconeogenic enzymes (R = >0.667, P < 0.05) but not markers of inflammation (P > 0.05). CONCLUSIONS: FD increases hepcidin in male and female mice and results in hypoferremia and tissue iron sequestration. These findings suggest that increased hepcidin with FD may contribute to the disturbances in iron homeostasis with undernutrition.


Asunto(s)
Hepcidinas , Inanición , Animales , Femenino , Privación de Alimentos , Hepcidinas/genética , Hormonas , Hierro , Hierro de la Dieta , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero
10.
Physiol Rep ; 10(13): e15385, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35818300

RESUMEN

Initial military training (IMT) results in increased fat-free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome during 22-week US Army IMT. Fifty-four volunteers (mean ± SD; 22 ± 3 year; 24.6 ± 3.7 kg/m2 ) completed this longitudinal study. Body composition measurements (InBody 770) and blood samples were collected under fasting, rested conditions PRE and POST IMT. Global metabolite profiling was performed to identify metabolites involved in energy, carbohydrate, lipid, and protein metabolism (Metabolon, Inc.). There was no change in body mass (POST-PRE; 0.4 ± 5.1 kg, p = 0.59), while FM decreased (-1.7 ± 3.5 kg, p < 0.01), and FFM increased (2.1 ± 2.8 kg, p < 0.01) POST compared to PRE IMT. Of 677 identified metabolites, 340 differed at POST compared to PRE (p < 0.05, Q < 0.10). The majority of these metabolites were related to fatty acid (73%) and amino acid (26%) metabolism. Increases were detected in 41% of branched-chain amino acid metabolites, 53% of histidine metabolites, and 35% of urea cycle metabolites. Decreases were detected in 93% of long-chain fatty acid metabolites, while 58% of primary bile acid metabolites increased. Increases in amino acid metabolites suggest higher rates of protein turnover, while changes in fatty acid metabolites indicate increased fat oxidation, which likely contribute changes in body composition during IMT. Overall, changes in metabolomics profiles provide insight into metabolic adaptions underlying changes in body composition during IMT.


Asunto(s)
Ácidos Grasos , Personal Militar , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Humanos , Estudios Longitudinales , Metaboloma , Metabolómica/métodos
11.
J Physiol ; 600(17): 3951-3963, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35822542

RESUMEN

MicroRNAs (miRNAs) regulate molecular processes governing muscle metabolism. Physical activity and energy balance influence both muscle anabolism and substrate metabolism, but whether circulating and skeletal muscle miRNAs mediate those effects remains unknown. This study assessed the impact of sustained physical activity with participants in energy balance (BAL) or deficit (DEF) on circulating and skeletal muscle miRNAs. Using a randomized cross-over design, 10 recreational active healthy males (mean ± SD, 22 ± 5 years, 87 ± 11 kg) completed 72 h of high aerobic exercise-induced energy expenditures in BAL (689 ± 852 kcal/day) or DEF (-2047 ± 920 kcal/day). Blood and muscle samples were collected under rested/fasted conditions before (PRE) and immediately after 120 min load carriage exercise bout at the end (POST) of the 72 h. Trials were separated by 7 days. Circulating and skeletal muscle miRNAs were measured using microarray RT-qPCR. Independent of energy status, 36 circulating miRNAs decreased (P < 0.05), while 10 miRNAs increased and three miRNAs decreased in skeletal muscle (P < 0.05) at POST compared to PRE. Of these, miR-122-5p, miR-221-3p, miR-222-3p and miR-24-3p decreased in circulation and increased in skeletal muscle. Two circulating (miR-145-5p and miR-193a-5p) and four skeletal muscle (miR-21-5p, miR-372-3p, miR-34a-5p and miR-9-5p) miRNAs had time-by-treatment effects (P < 0.05). These data suggest that changes in miRNA profiles are more sensitive to increased physical activity compared to energy status, and that changes in circulating miRNAs in response to high levels of daily aerobic exercise are not reflective of changes in skeletal muscle miRNAs. KEY POINTS: Circulating and skeletal muscle miRNA profiles are more sensitive to high levels of aerobic exercise-induced energy expenditure compared to energy status. Changes in circulating miRNA in response to high levels of daily sustained aerobic exercise are not reflective of changes in skeletal muscle miRNA.


Asunto(s)
Ejercicio Físico , MicroARNs , Adulto , Estudios Cruzados , Metabolismo Energético , Ejercicio Físico/fisiología , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiología , Adulto Joven
13.
Brain Behav Immun ; 101: 383-393, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131441

RESUMEN

BACKGROUND: Physical and psychological stress alter gut-brain axis activity, potentially causing intestinal barrier dysfunction that may, in turn, induce cognitive and mood impairments through exacerbated inflammation and blood brain barrier (BBB) permeability. These interactions are commonly studied in animals or artificial laboratory environments. However, military survival training provides an alternative and unique human model for studying the impacts of severe physical and psychological stress on the gut-brain axis in a realistic environment. PURPOSE: To determine changes in intestinal barrier and BBB permeability during stressful military survival training and identify relationships between those changes and markers of stress, inflammation, cognitive performance, and mood state. MATERIALS AND METHODS: Seventy-one male U.S. Marines (25.2 ± 2.6 years) were studied during Survival, Evasion, Resistance, and Escape (SERE) training. Measurements were conducted on day 2 of the 10-day classroom phase of training (PRE), following completion of the 7.5-day field-based simulation phase of the training (POST), and following a 27-day recovery period (REC). Fat-free mass (FFM) was measured to assess the overall physiologic impact of the training. Biomarkers of intestinal permeability (liposaccharide-binding protein [LBP]) and BBB permeability (S100 calcium-binding protein B [S100B]), stress (cortisol, dehydroepiandrosterone sulfate [DHEA-S] epinephrine, norepinephrine) and inflammation (interleukin-6 [IL-6], high-sensitivity C-reactive protein [hsCRP]) were measured in blood. Cognitive performance was assessed by psychomotor vigilance (PVT) and grammatical reasoning (GR) tests, and mood state by the Profile of Mood States (total mood disturbance; TMD), General Anxiety Disorder-7 (GAD-7), and Patient Health (PHQ-9) questionnaires. RESULTS: FFM, psychomotor vigilance, and LBP decreased from PRE to POST, while TMD, anxiety, and depression scores, and S100B, DHEA-S, IL-6, norepinephrine, and epinephrine concentrations all increased (all p ≤ 0.01). Increases in DHEA-S were associated with decreases in body mass (p = 0.015). Decreases in FFM were associated with decreases in LBP concentrations (p = 0.015), and both decreases in FFM and LBP were associated with increases in TMD and depression scores (all p < 0.05) but not with changes in cognitive performance. Conversely, increases in S100B concentrations were associated with decreases in psychomotor vigilance (p < 0.05) but not with changes in mood state or LBP concentrations. CONCLUSIONS: Evidence of increased intestinal permeability was not observed in this military survival training-based model of severe physical and psychological stress. However, increased BBB permeability was associated with stress and cognitive decline, while FFM loss was associated with mood disturbance, suggesting that distinct mechanisms may contribute to decrements in cognitive performance and mood state during the severe physical and psychological stress experienced during military survival training.


Asunto(s)
Barrera Hematoencefálica , Eje Cerebro-Intestino , Cognición , Estrés Psicológico , Afecto , Biomarcadores , Barrera Hematoencefálica/metabolismo , Deshidroepiandrosterona , Epinefrina , Humanos , Inflamación , Interleucina-6/metabolismo , Masculino , Norepinefrina , Permeabilidad , Estrés Psicológico/metabolismo
14.
Mil Med ; 187(11-12): 1381-1388, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34302352

RESUMEN

INTRODUCTION: Anthropometrics and body composition characteristics differentiate many types of athletes and are related to performance on fitness tests and tasks in military personnel. Soldiers competing to enter elite units must demonstrate physical fitness and operational competence across multiple events. Therefore, this study determined whether anthropometrics and body composition predicted physical performance and selection for special forces training among soldiers attending the rigorous Special Forces Assessment and Selection (SFAS) course. MATERIALS AND METHODS: Soldiers attending the SFAS course between May 2015 and March 2017 were enrolled in a longitudinal, observational study. Anthropometrics (height, body mass, and body mass index [BMI]; n = 795) and body composition measured by dual-energy X-ray absorptiometry (percentage body fat, fat mass, lean mass, bone mineral content [BMC], and bone mineral density [BMD]; n = 117) were assessed before the course start. Associations with physical performance were determined with correlation coefficients. Associations with selection were determined with analyses of variance and t-tests; effect sizes were calculated as Cohen's d. The U.S. Army Research Institute of Environmental Medicine Institutional Review Board (IRB) initially approved this study, and the U.S. Army Medical Research and Development Command IRB approved the continuing review. RESULTS: Lower percentage body fat and fat mass predicted better performance on all assessments: Army Physical Fitness Test (APFT), pull-ups, SFAS run, loaded road march, obstacle course, and land navigation (P ≤ .05). Higher lean mass predicted better performance on the loaded road march (P ≤ .05). Lower body mass and BMI predicted better performance on APFT, pull-ups, run, and obstacle course; higher body mass and BMI predicted better performance on the loaded road march (P ≤ .05). Shorter stature predicted better performance on push-ups (APFT) and pull-ups; taller stature predicted better performance on SFAS run and loaded road march (P ≤ .05). On average, the selected soldiers were taller (179.0 ± 6.6 vs. 176.7 ± 6.7 cm), had higher body mass (85.8 ± 8.8 vs. 82.1 ± 9.6 kg), BMI (26.8 ± 2.2 vs. 26.3 ± 2.6 kg/m2), lean mass (67.2 ± 7.3 vs. 61.9 ± 7.6 kg), BMC (3.47 ± 0.40 vs. 3.29 ± 0.56 kg), and BMD (1.34 ± 0.10 vs. 1.28 ± 0.10 g/cm2), and lower percentage body fat (17.3 ± 3.4 vs. 20.1 ± 4.5%) and fat mass (14.2 ± 3.7 vs. 15.8 ± 4.4 kg) (P ≤ .05). Effect sizes were largest for lean mass (Cohen's d = 0.71) and percentage body fat (d = 0.70), followed by BMD (d = 0.60), body mass (d = 0.40), fat mass (d = 0.39), BMC (d = 0.37), height (d = 0.35), and BMI (d = 0.21). Body mass adjustment attenuated associations between height and selection. CONCLUSIONS: Anthropometrics and body composition are predictors of physical performance and SFAS success. Since these measures are modifiable (excluding height), they may be the focus of intervention studies aiming to improve performance in arduous military training courses, sports that require competition in multiple events, and occupations that have varied physical demands, such as firefighting, law enforcement, and construction.


Asunto(s)
Personal Militar , Humanos , Estados Unidos , Composición Corporal , Rendimiento Físico Funcional , Aptitud Física , Antropometría
15.
J Acad Nutr Diet ; 122(6): 1114-1128.e1, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34601165

RESUMEN

BACKGROUND: Vitamin D deficiency (VDD), defined as serum 25-hydroxyvitamin D (25[OH]D) levels < 20 ng/mL [to convert 25[OH]D ng/mL to nmol/L, multiply by 2.5]) is prevalent in young adults and has been associated with adverse health outcomes, including stress fracture during periods of increased physical activity such as military training. Foods commonly consumed at breakfast provide an important source of vitamin D, yet breakfast skipping is common among young adults. However, whether breakfast skipping is associated with VDD in young adults is unclear. OBJECTIVES: This study aimed to determine whether breakfast skipping is associated with odds of VDD among recruits entering initial military training (IMT), and with changes in serum 25(OH)D during IMT. In addition, whether diet quality and vitamin D intake mediated these associations was determined. DESIGN: Secondary analysis of individual participant data collected during five IMT studies. Breakfast skipping (≥ 3 times/week) was self-reported. Dietary intake was determined using food frequency questionnaires, and vitamin D status was assessed using circulating 25(OH)D concentrations pre- and post-IMT. PARTICIPANTS AND SETTING: Participants were healthy US Army, US Air Force, and US Marine recruits (N = 1,569, 55% male, mean ± standard deviation age 21 ± 4 years) entering military service between 2010 and 2015 at Fort Jackson, SC; Fort Sill, OK; Lakeland Air Force Base, TX; or the Marine Corps Recruit Depot, Parris Island, SC. MAIN OUTCOME MEASURES: Primary outcomes were VDD pre-IMT and change in 25(OH)D from pre- to post-IMT. STATISTICAL ANALYSIS PERFORMED: Associations were determined using multivariate-adjusted logistic and linear regression and mediation models. RESULTS: Forty-six percent of military recruits were classified as breakfast skippers pre-IMT, and 30% were VDD. Breakfast skipping was associated with a higher odds of pre-IMT VDD (odds ratio 1.5, 95% CI 1.1 to 1.9), and lower vitamin D intake and diet quality were partial mediators of the association. Serum 25(OH)D concentrations improved (P = 0.01) among habitual breakfast skippers versus nonskippers during IMT; however, regression to the mean could not be ruled out. Neither change in diet quality nor vitamin D intake were associated with change in 25(OH)D concentrations during IMT. CONCLUSIONS: Breakfast skipping is prevalent among incoming military recruits and is associated with VDD. This relationship may be mediated by lower diet quality and vitamin D intake.


Asunto(s)
Personal Militar , Deficiencia de Vitamina D , Adolescente , Adulto , Desayuno , Dieta , Femenino , Humanos , Masculino , Vitamina D , Deficiencia de Vitamina D/epidemiología , Vitaminas , Adulto Joven
16.
Int J Food Sci Nutr ; 73(2): 158-171, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34225548

RESUMEN

The traditional Mediterranean diet is considered the world's most evidence-based eating pattern for promoting health and longevity. However, institutional food environments and their busy consumers often sacrifice health benefits for the convenience of faster and cheaper foods that generally are of lower quality and are more processed, and thus, contribute to the current epidemics of obesity and diabetes. Expert consensus has even identified the Mediterranean diet as the easiest to follow among healthy eating patterns. Nonetheless, fewer American families cook at home and many food services have been slow to implement healthier food options compatible with the Mediterranean diet. In September 2019, we convened a group of thought leaders at an exploratory seminar entitled: "Mediterranean Diet: Promotion and Dissemination of Healthy Eating", hosted by the Radcliffe Institute for Advanced Studies at Harvard University. The multidisciplinary faculty discussed best practices for translating traditional Mediterranean lifestyle principles to modern society.


Asunto(s)
Dieta Mediterránea , Dieta Saludable , Conducta Alimentaria , Alimentos , Humanos , Estilo de Vida
17.
Eur J Sport Sci ; 22(1): 87-98, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33980120

RESUMEN

The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of (1) determining operational nutrition requirements in all environments, (2) characterizing nutritional practices of military personnel relative to the required (role/environment) standards, and (3) developing strategies for improving nutrient delivery and individual choices. This review discusses contemporary issues shared internationally by military nutrition research programmes, and highlights emerging topics likely to influence future military nutrition research and policy. Contemporary issues include improving the diet quality of military personnel, optimizing operational rations, and increasing understanding of biological factors influencing nutrient requirements. Emerging areas include the burgeoning field of precision nutrition and its technological enablers.


Asunto(s)
Personal Militar , Dieta , Humanos , Nutrientes , Necesidades Nutricionales , Estado Nutricional
18.
Br J Nutr ; 128(9): 1730-1737, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34814952

RESUMEN

Maintaining Mg status may be important for military recruits, a population that experiences high rates of stress fracture during initial military training (IMT). The objectives of this secondary analysis were to (1) compare dietary Mg intake and serum Mg in female and male recruits pre- and post-IMT, (2) determine whether serum Mg was related to parameters of bone health pre-IMT, and (3) whether Ca and vitamin D supplementation (Ca/vitamin D) during IMT modified serum Mg. Females (n 62) and males (n 51) consumed 2000 mg of Ca and 25 µg of vitamin D/d or placebo during IMT (12 weeks). Dietary Mg intakes were estimated using FFQ, serum Mg was assessed and peripheral quantitative computed tomography was performed on the tibia. Dietary Mg intakes for females and males pre-IMT were below the estimated average requirement and did not change with training. Serum Mg increased during IMT in females (0·06 ± 0·08 mmol/l) compared with males (-0·02 ± 0·10 mmol/l; P < 0·001) and in those consuming Ca/vitamin D (0·05 ± 0·09 mmol/l) compared with placebo (0·001 ± 0·11 mmol/l; P = 0·015). In females, serum Mg was associated with total bone mineral content (BMC, ß = 0·367, P = 0·004) and robustness (ß = 0·393, P = 0·006) at the distal 4 % site, stress-strain index of the polaris axis (ß = 0·334, P = 0·009) and robustness (ß = 0·420, P = 0·004) at the 14 % diaphyseal site, and BMC (ß = 0·309, P = 0·009) and stress-strain index of the polaris axis (ß = 0·314, P = 0·006) at the 66 % diaphyseal site pre-IMT. No significant relationships between serum Mg and bone measures were observed in males. Findings suggest that serum Mg may be modulated by Ca/vitamin D intake and may impact tibial bone health during training in female military recruits.


Asunto(s)
Calcio , Personal Militar , Masculino , Humanos , Femenino , Magnesio , Vitamina D , Densidad Ósea , Suplementos Dietéticos
19.
Bone ; 155: 116269, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34861430

RESUMEN

Basic combat training (BCT) is a period of novel physical training including load carriage resulting in higher risk of stress fracture compared to any other time during military service. Prior trials reported a 20% reduction in stress fracture incidence with Ca and vitamin D (Ca + D) supplementation (2000 mg Ca, 800 IU vitamin D), and greater increases in tibia vBMD during BCT compared to placebo. The primary objective of this randomized, double-blind, placebo-controlled trial was to determine the efficacy of a lower dose of Ca (1000 mg/d Ca, 1000 IU vit D) on PTH, bone biomarkers and tibial microarchitecture during BCT. One hundred volunteers (50 males, 50 females; mean age 21.8 ± 3.5 y) were block randomized by race and sex to receive a daily Ca + D fortified food bar or placebo. Anthropometrics, dietary intake, fasted blood draws and high resolution pQCT scans of the distal and mid-shaft tibia were obtained at the start of BCT and 8 wks later at the conclusion of training. As compliance was 98% in both treatment groups, an intent-to-treat analysis was used. At the distal tibia, total vBMD, Tb.vBMD, Tb.N, Th.Th and Tb.BV/TV increased (+1.07 to 2.12% for all, p < 0.05) and Tb.Sp decreased (0.96 to 1.09%, p < 0.05) in both treatment groups. At the mid-shaft, Ct.Pm increased (+0.18 to 0.21%, p = 0.01) and Ct.vBMD decreased (-0.48 to -0.77%, p < 0.001) in both groups. Ca + D prevented increases in CTX and TRAP, which were observed in the placebo group (group-by-time, p < 0.05). Mean circulating 25OHD, BAP, P1NP and iCa increased and PTH decreased in both treatment groups (p < 0.05). These results, in agreement with other studies, suggest that bone microarchitectural changes indicative of bone formation occur during BCT. While Ca + D supplementation at lower doses than those tested in previous studies prevented increases in biochemical markers of bone resorption in this study, there were no significant changes in bone tissue after 8 wks of Army BCT.


Asunto(s)
Resorción Ósea , Fracturas por Estrés , Personal Militar , Adolescente , Adulto , Biomarcadores , Densidad Ósea , Resorción Ósea/tratamiento farmacológico , Calcio , Calcio de la Dieta , Suplementos Dietéticos , Femenino , Humanos , Masculino , Tibia/diagnóstico por imagen , Vitamina D , Vitaminas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...